from mgcpy.independence_tests.abstract_class import IndependenceTest
from scipy.stats import kendalltau, spearmanr
[docs]class KendallSpearman(IndependenceTest):
    def __init__(self, compute_distance_matrix=None, which_test='kendall'):
        """
        :param compute_distance_matrix: a function to compute the pairwise distance matrix, given a data matrix
        :type compute_distance_matrix: FunctionType or callable()
        :param which_test: specifies which test to use, including 'kendall' or 'spearman'
        :type which_test: str
        """
        IndependenceTest.__init__(self, compute_distance_matrix)
        self.which_test = which_test
[docs]    def test_statistic(self, matrix_X, matrix_Y):
        """
        Computes the Spearman's rho or Kendall's tau measure between two datasets.
        - Implments scipy.stats's implementation for both
        :param matrix_X: a [n*1] data matrix, a matrix with n samples in 1 dimension
        :type matrix_X: 1D numpy.array
        :param matrix_Y: a [n*1] data matrix, a matrix with n samples in 1 dimension
        :type matrix_Y: 1D numpy.array
        :return: returns a list of two items, that contains:
            - :test_stat_: test statistic
            - :test_statistic_metadata_: (optional) a ``dict`` of metadata other than the p_value,
                                         that the independence tests computes in the process
        :rtype: float, dict
        **Example:**
        >>> import numpy as np
        >>> from mgcpy.independence_tests.kendall_spearman import KendallSpearman
        >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045,
                      0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1)
        >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312,
                      1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1)
        >>> kendall_spearman = KendallSpearman()
        >>> kendall_spearman_stat = kendall_spearman.test_statistic(X, Y)
        """
        assert matrix_X.shape[1] == 1, "Data matrix should be (n, 1) shape"
        assert matrix_Y.shape[1] == 1, "Data matrix should be (n, 1) shape"
        if self.which_test == 'kendall':
            self.test_statistic_ = kendalltau(matrix_X, matrix_Y)[0]
        else:
            self.test_statistic_ = spearmanr(matrix_X, matrix_Y)[0]
        self.test_statistic_metadata_ = {}
        return self.test_statistic_, self.test_statistic_metadata_ 
[docs]    def p_value(self, matrix_X, matrix_Y, replication_factor=1000):
        """
        Tests independence between two datasets using the independence test.
        :param matrix_X: a [n*p] data matrix, a matrix with n samples in p dimensions
        :type matrix_X: 2D `numpy.array`
        :param matrix_Y: a [n*q] data matrix, a matrix with n samples in q dimensions
        :type matrix_Y: 2D `numpy.array`
        :param replication_factor: specifies the number of replications to use for
                                   the permutation test. Defaults to 1000.
        :type replication_factor: int
        :return: returns a list of two items, that contains:
            - :p_value_: P-value
            - :p_value_metadata_: (optional) a ``dict`` of metadata other than the p_value,
                                 that the independence tests computes in the process
        :rtype: float, dict
        **Example:**
        >>> import numpy as np
        >>> from mgcpy.independence_tests.kendall_spearman import KendallSpearman
        >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045,
                      0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1)
        >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312,
                      1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1)
        >>> kendall_spearman = KendallSpearman()
        >>> kendall_spearman_p_value = kendall_spearman.p_value(X, Y)
        """
        return super(KendallSpearman, self).p_value(matrix_X, matrix_Y)