Independence Tests¶
Multiscale Graph Correlation (MGC)¶
Main MGC Independence Test Module
-
class
mgcpy.independence_tests.mgc.
MGC
(compute_distance_matrix=None, base_global_correlation='mgc')[source]¶ - Parameters
compute_distance_matrix (
FunctionType
orcallable()
) -- a function to compute the pairwise distance matrix, given a data matrixbase_global_correlation (string) -- specifies which global correlation to build up-on, including 'mgc','dcor','mantel', and 'rank'. Defaults to mgc.
Methods
get_name
(self)- return
the name of the independence test
p_value
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using MGC and permutation test.
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self, matrix_X, matrix_Y[, ...])Computes the MGC measure between two datasets.
-
test_statistic
(self, matrix_X, matrix_Y, is_fast=False, fast_mgc_data={})[source]¶ Computes the MGC measure between two datasets.
It first computes all the local correlations
Then, it returns the maximal statistic among all local correlations based on thresholding.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
is_fast (boolean) -- is a boolean flag which specifies if the test_statistic should be computed (approximated) using the fast version of mgc. This defaults to False.
fast_mgc_data (dictonary) --
a
dict
of fast mgc params, refer: self._fast_mgc_test_statistic- sub_samples
specifies the number of subsamples.
- Returns
returns a list of two items, that contains:
- test_statistic
the sample MGC statistic within [-1, 1]
- independence_test_metadata
a
dict
of metadata with the following keys: - :local_correlation_matrix: a 2D matrix of all local correlations within[-1,1]
- :optimal_scale: the estimated optimal scale as an[x, y]
pair.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc import MGC >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc = MGC() >>> mgc_statistic, test_statistic_metadata = mgc.test_statistic(X, Y)
-
p_value
(self, matrix_X, matrix_Y, replication_factor=1000, is_fast=False, fast_mgc_data={})[source]¶ Tests independence between two datasets using MGC and permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.is_fast (boolean) -- is a boolean flag which specifies if the p_value should be computed (approximated) using the fast version of mgc. This defaults to False.
fast_mgc_data (dictonary) --
a
dict
of fast mgc params, , refer: self._fast_mgc_p_value- sub_samples
specifies the number of subsamples.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys:- test_statistic
the sample MGC statistic within
[-1, 1]
- p_local_correlation_matrix
a 2D matrix of the P-values of the local correlations
- local_correlation_matrix
a 2D matrix of all local correlations within
[-1,1]
- optimal_scale
the estimated optimal scale as an
[x, y]
pair.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc import MGC >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc = MGC() >>> p_value, metadata = mgc.p_value(X, Y, replication_factor = 100)
-
get_name
(self)¶ - Returns
the name of the independence test
- Return type
string
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
MGC Time Series¶
-
class
mgcpy.independence_tests.mgcx.
MGCX
(compute_distance_matrix=None, max_lag=0)[source]¶ - Parameters
compute_distance_matrix (
FunctionType
orcallable()
) -- a function to compute the pairwise distance matrix, given a data matrixbase_global_correlation (string) -- specifies which global correlation to build up-on, including 'mgc','dcor','mantel', and 'rank'. Defaults to mgc.
max_lag (int) -- Furthest lag to check for dependence.
Methods
get_name
(self)- return
the name of the independence test
p_value
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using MGC_TS and block permutation test.
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self, matrix_X, matrix_Y[, p])Computes the MGCX measure between two time series datasets.
-
test_statistic
(self, matrix_X, matrix_Y, p=None)[source]¶ Computes the MGCX measure between two time series datasets.
It first computes all the local correlations
Then, it returns the maximal statistic among all local correlations based on thresholding.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
p (float) -- bandwidth parameter for Bartlett Kernel.
- Returns
returns a list of two items, that contains:
- test_statistic
the sample mgc_ts statistic (not necessarily within [-1,1])
- test_statistic_metadata
a
dict
of metadata with the following keys: - :dist_mtx_X: the distance matrix of sample X - :dist_mtx_Y: the distance matrix of sample X
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc import MGC >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> mgc_ts_statistic, test_statistic_metadata = mgc.test_statistic(X, Y)
-
p_value
(self, matrix_X, matrix_Y, replication_factor=1000)[source]¶ Tests independence between two datasets using MGC_TS and block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
-
get_name
(self)¶ - Returns
the name of the independence test
- Return type
string
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
Biased and Unbiased Distance Correlation (Dcorr) and Mantel¶
-
class
mgcpy.independence_tests.dcorr.
DCorr
(compute_distance_matrix=None, which_test='unbiased', is_paired=False)[source]¶ - Parameters
compute_distance_matrix (FunctionType or callable()) -- a function to compute the pairwise distance matrix, given a data matrix
which_test (string) -- the type of global correlation to use, can be 'unbiased', 'biased' 'mantel'
Methods
compute_global_covariance
(self, dist_mtx_X, ...)Helper function: Compute the global covariance using distance matrix A and B
get_name
(self)- return
the name of the independence test
p_value
(self, matrix_X, matrix_Y[, ...])Compute the p-value if the correlation test is unbiased, p-value can be computed using a t test otherwise computed using permutation test
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self, matrix_X, matrix_Y[, ...])Computes the distance correlation between two datasets.
unbiased_T
(self, matrix_X, matrix_Y)Helper function: Compute the t-test statistic for unbiased dcorr
-
test_statistic
(self, matrix_X, matrix_Y, is_fast=False, fast_dcorr_data={})[source]¶ Computes the distance correlation between two datasets.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
data matrix, a matrix withn
samples inq
dimensions
is_fast (boolean) -- is a boolean flag which specifies if the test_statistic should be computed (approximated) using the fast version of dcorr. This defaults to False.
fast_dcorr_data (dictonary) --
a
dict
of fast dcorr params, refer: self._fast_dcorr_test_statistic- sub_samples
specifies the number of subsamples.
- Returns
returns a list of two items, that contains:
- test_statistic
the sample dcorr statistic within [-1, 1]
- independence_test_metadata
a
dict
of metadata with the following keys: - :variance_X: the variance of the data matrix X - :variance_Y: the variance of the data matrix Y
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.dcorr import DCorr >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> dcorr = DCorr(which_test = 'unbiased') >>> dcorr_statistic, test_statistic_metadata = dcorr.test_statistic(X, Y)
-
compute_global_covariance
(self, dist_mtx_X, dist_mtx_Y)[source]¶ Helper function: Compute the global covariance using distance matrix A and B
- Parameters
dist_mtx_X (2D numpy.array) -- a [n*n] distance matrix
dist_mtx_Y (2D numpy.array) -- a [n*n] distance matrix
- Returns
the data covariance or variance based on the distance matrices
- Return type
numpy.float
-
unbiased_T
(self, matrix_X, matrix_Y)[source]¶ Helper function: Compute the t-test statistic for unbiased dcorr
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
matrix, a matrix withn
samples inq
dimensions
- Returns
test statistic of t-test for unbiased dcorr
- Return type
numpy.float
-
p_value
(self, matrix_X, matrix_Y, replication_factor=1000, is_fast=False, fast_dcorr_data={})[source]¶ Compute the p-value if the correlation test is unbiased, p-value can be computed using a t test otherwise computed using permutation test
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.is_fast (boolean) -- is a boolean flag which specifies if the test_statistic should be computed (approximated) using the fast version of dcorr. This defaults to False.
fast_dcorr_data (dictonary) --
a
dict
of fast dcorr params, refer: self._fast_dcorr_test_statistic- sub_samples
specifies the number of subsamples.
- Returns
p-value of distance correlation
- Return type
numpy.float
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.dcorr import DCorr >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> dcorr = DCorr() >>> p_value, metadata = dcorr.p_value(X, Y, replication_factor = 100)
-
get_name
(self)¶ - Returns
the name of the independence test
- Return type
string
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
Dcorr Time Series¶
-
class
mgcpy.independence_tests.dcorrx.
DCorrX
(compute_distance_matrix=None, which_test='unbiased', max_lag=0)[source]¶ - Parameters
compute_distance_matrix (FunctionType or callable()) -- a function to compute the pairwise distance matrix, given a data matrix
which_test (string) -- the type of distance covariance estimate to use, can be 'unbiased', 'biased' 'mantel'
max_lag (int) -- Maximum lead/lag to check for dependence between X_t and Y_t+j (M parameter)
Methods
get_name
(self)- return
the name of the independence test
p_value
(self, matrix_X, matrix_Y[, ...])Compute the p-value if the correlation test is unbiased, p-value can be computed using a t test otherwise computed using permutation test
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self, matrix_X, matrix_Y[, p])Computes the (summed across lags) cross distance covariance estimate between two time series.
-
test_statistic
(self, matrix_X, matrix_Y, p=None)[source]¶ Computes the (summed across lags) cross distance covariance estimate between two time series.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
p (float) -- bandwidth parameter for Bartlett Kernel.
- Returns
returns a list of two items, that contains:
- test_statistic
the sample cdcv statistic (not necessarily within [-1,1])
- test_statistic_metadata
a
dict
of metadata with the following keys: - :dist_mtx_X: the distance matrix of sample X - :dist_mtx_Y: the distance matrix of sample X
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.dcorr import DCorr >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> cdcv = CDCV(which_test = 'unbiased') >>> cdcv_statistic = cdcv.test_statistic(X, Y)
-
p_value
(self, matrix_X, matrix_Y, replication_factor=1000)[source]¶ Compute the p-value if the correlation test is unbiased, p-value can be computed using a t test otherwise computed using permutation test
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*d]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
p-value of distance correlation
- Return type
numpy.float
- Returns
returns a list of two items, that contains:
- p_value
ta
numpy.float
containing the p-value of the observed test statistic.
- p_value_metadata
a
dict
of metadata with the following keys: - :null_distribution: the estimated (discrete) distribution of the test statistic
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.dcorr import DCorr >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> cdcv = CDCV() >>> p_value, metadata = dcorr.p_value(X, Y, replication_factor = 100)
-
get_name
(self)¶ - Returns
the name of the independence test
- Return type
string
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
Heller Heller Gorfine (HHG)¶
-
class
mgcpy.independence_tests.hhg.
HHG
(compute_distance_matrix=None)[source]¶ - Parameters
compute_distance_matrix (FunctionType or callable()) -- a function to compute the pairwise distance matrix, given a data matrix
Methods
get_name
(self)- return
the name of the independence test
p_value
(self[, matrix_X, matrix_Y, ...])Tests independence between two datasets using HHG and permutation test.
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self, matrix_X, matrix_Y)Computes the HHG correlation measure between two datasets.
-
test_statistic
(self, matrix_X, matrix_Y)[source]¶ Computes the HHG correlation measure between two datasets.
- Parameters
matrix_X (2D numpy.array) -- a [n*p] data matrix, a matrix with n samples in p dimensions
matrix_Y (2D numpy.array) -- a [n*q] data matrix, a matrix with n samples in q dimensions
replication_factor (int) -- specifies the number of replications to use for the permutation test. Defaults to 1000.
- Returns
returns a list of two items, that contains:
- test_statistic_
test statistic
- test_statistic_metadata_
(optional) a
dict
of metadata other than the p_value, that the independence tests computes in the process
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.hhg import HHG
>>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> hhg = HHG() >>> hhg_test_stat = hhg.test_statistic(X, Y)
-
p_value
(self, matrix_X=None, matrix_Y=None, replication_factor=1000)[source]¶ Tests independence between two datasets using HHG and permutation test.
- Parameters
matrix_X (2D numpy.array) -- a [n*p] data matrix, a matrix with n samples in p dimensions
matrix_Y (2D numpy.array) -- a [n*q] data matrix, a matrix with n samples in q dimensions
replication_factor (int) -- specifies the number of replications to use for the permutation test. Defaults to 1000.
- Returns
returns a list of two items, that contains:
- p_value_
P-value
- p_value_metadata_
(optional) a
dict
of metadata other than the p_value, that the independence tests computes in the process
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.hhg import HHG
>>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> hhg = HHG() >>> hhg_p_value = hhg.p_value(X, Y)
-
get_name
(self)¶ - Returns
the name of the independence test
- Return type
string
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
Kendall and Spearman¶
-
class
mgcpy.independence_tests.kendall_spearman.
KendallSpearman
(compute_distance_matrix=None, which_test='kendall')[source]¶ - Parameters
compute_distance_matrix (FunctionType or callable()) -- a function to compute the pairwise distance matrix, given a data matrix
which_test (str) -- specifies which test to use, including 'kendall' or 'spearman'
Methods
get_name
(self)- return
the name of the independence test
p_value
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using the independence test.
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self, matrix_X, matrix_Y)Computes the Spearman's rho or Kendall's tau measure between two datasets.
-
test_statistic
(self, matrix_X, matrix_Y)[source]¶ Computes the Spearman's rho or Kendall's tau measure between two datasets. - Implments scipy.stats's implementation for both
- Parameters
matrix_X (1D numpy.array) -- a [n*1] data matrix, a matrix with n samples in 1 dimension
matrix_Y (1D numpy.array) -- a [n*1] data matrix, a matrix with n samples in 1 dimension
- Returns
returns a list of two items, that contains:
- test_stat_
test statistic
- test_statistic_metadata_
(optional) a
dict
of metadata other than the p_value, that the independence tests computes in the process
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.kendall_spearman import KendallSpearman
>>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> kendall_spearman = KendallSpearman() >>> kendall_spearman_stat = kendall_spearman.test_statistic(X, Y)
-
p_value
(self, matrix_X, matrix_Y, replication_factor=1000)[source]¶ Tests independence between two datasets using the independence test.
- Parameters
matrix_X (2D numpy.array) -- a [n*p] data matrix, a matrix with n samples in p dimensions
matrix_Y (2D numpy.array) -- a [n*q] data matrix, a matrix with n samples in q dimensions
replication_factor (int) -- specifies the number of replications to use for the permutation test. Defaults to 1000.
- Returns
returns a list of two items, that contains:
- p_value_
P-value
- p_value_metadata_
(optional) a
dict
of metadata other than the p_value, that the independence tests computes in the process
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.kendall_spearman import KendallSpearman
>>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> kendall_spearman = KendallSpearman() >>> kendall_spearman_p_value = kendall_spearman.p_value(X, Y)
-
get_name
(self)¶ - Returns
the name of the independence test
- Return type
string
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
Multivariate Distance Matrix Regression (MDMR)¶
Main MDMR Independence Test Module
-
class
mgcpy.independence_tests.mdmr.
MDMR
(compute_distance_matrix=None)[source]¶ - Parameters
compute_distance_matrix (
FunctionType
orcallable()
) -- a function to compute the pairwise distance matrix, given a data matrix
Methods
get_name
(self)- return
the name of the independence test
ind_p_value
(self, matrix_X, matrix_Y[, ...])Individual predictor variable p-values calculation
p_value
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using MGC and permutation test.
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self, matrix_X, matrix_Y[, ...])Computes MDMR Pseudo-F statistic between two datasets.
-
test_statistic
(self, matrix_X, matrix_Y, permutations=0, individual=0, disttype='cityblock')[source]¶ Computes MDMR Pseudo-F statistic between two datasets.
It first takes the distance matrix of Y (by )
Next it regresses X into a portion due to Y and a portion due to residual
The p-value is for the null hypothesis that the variable of X is not correlated with Y's distance matrix
- Parameters
data_matrix_X (2D numpy.array) --
(optional, default picked from class attr) is interpreted as:
a
[n*d]
data matrix, a matrix with n samples in d dimensions
data_matrix_Y (2D numpy.array) --
(optional, default picked from class attr) is interpreted as:
a
[n*d]
data matrix, a matrix with n samples in d dimensions
'individual' -- -integer, 0 or 1 with value 0 tests the entire X matrix (default) with value 1 tests the entire X matrix and then each predictor variable individually
- Returns
with individual = 0, returns 1 values, with individual = 1 returns 2 values, containing:
-the test statistic of the entire X matrix -for individual = 1, an array with the variable of X in the first column,
the test statistic in the second, and the permutation p-value in the third (which here will always be 1)
- Return type
-
p_value
(self, matrix_X, matrix_Y, replication_factor=1000)[source]¶ Tests independence between two datasets using MGC and permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as:
a
[n*d]
data matrix, a matrix withn
samples ind
dimensions
matrix_Y (2D numpy.array) --
is interpreted as:
a
[n*d]
data matrix, a matrix withn
samples ind
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items,that contains:
- p_value
P-value of MGC
- p_value_metadata
- Return type
-
ind_p_value
(self, matrix_X, matrix_Y, permutations=1000, individual=1, disttype='cityblock')[source]¶ Individual predictor variable p-values calculation
- Parameters
matrix_X (2D numpy.array) --
is interpreted as:
a
[n*d]
data matrix, a matrix withn
samples ind
dimensions
matrix_Y (2D numpy.array) --
is interpreted as:
a
[n*d]
data matrix, a matrix withn
samples ind
dimensions
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)
Pearson's Correlation, RV, Canonical Analysis (CCA)¶
-
class
mgcpy.independence_tests.rv_corr.
RVCorr
(compute_distance_matrix=None, which_test='rv')[source]¶ - Parameters
compute_distance_matrix (FunctionType or callable()) -- a function to compute the pairwise distance matrix, given a data matrix
which_test (str) -- specifies which test to use, including 'rv', 'pearson', and 'cca'.
Methods
get_name
(self)- return
the name of the independence test
p_value
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using the independence test.
p_value_block
(self, matrix_X, matrix_Y[, ...])Tests independence between two datasets using block permutation test.
test_statistic
(self[, matrix_X, matrix_Y])Computes the Pearson/RV/CCa correlation measure between two datasets.
-
test_statistic
(self, matrix_X=None, matrix_Y=None)[source]¶ Computes the Pearson/RV/CCa correlation measure between two datasets.
Default computes linear correlation for RV
Computes pearson's correlation
Calculates local linear correlations for CCa
- Parameters
matrix_X (2D numpy.array) -- a [n*p] data matrix, a matrix with n samples in p dimensions
matrix_Y (2D numpy.array) -- a [n*q] data matrix, a matrix with n samples in q dimensions
replication_factor (int) -- specifies the number of replications to use for the permutation test. Defaults to 1000.
- Returns
returns a list of two items, that contains:
- test_statistic_
test statistic
- test_statistic_metadata_
(optional) a
dict
of metadata other than the p_value, that the independence tests computes in the process
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.rv_corr import RVCorr
>>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> rvcorr = RVCorr() >>> rvcorr_test_stat = rvcorr.test_statistic(X, Y)
-
p_value
(self, matrix_X, matrix_Y, replication_factor=1000)[source]¶ Tests independence between two datasets using the independence test.
- Parameters
matrix_X (2D numpy.array) -- a [n*p] data matrix, a matrix with n samples in p dimensions
matrix_Y (2D numpy.array) -- a [n*q] data matrix, a matrix with n samples in q dimensions
replication_factor (int) -- specifies the number of replications to use for the permutation test. Defaults to 1000.
- Returns
returns a list of two items, that contains:
- p_value_
P-value
- p_value_metadata_
(optional) a
dict
of metadata other than the p_value, that the independence tests computes in the process
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.rv_corr import RVCorr
>>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> rvcorr = RVCorr() >>> rvcorr_p_value = rvcorr.p_value(X, Y)
-
get_name
(self)¶ - Returns
the name of the independence test
- Return type
string
-
p_value_block
(self, matrix_X, matrix_Y, replication_factor=1000)¶ Tests independence between two datasets using block permutation test.
- Parameters
matrix_X (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*p]
data matrix, a matrix withn
samples inp
dimensions
matrix_Y (2D numpy.array) --
is interpreted as either:
a
[n*n]
distance matrix, a square matrix with zeros on diagonal forn
samples ORa
[n*q]
data matrix, a matrix withn
samples inq
dimensions
replication_factor (integer) -- specifies the number of replications to use for the permutation test. Defaults to
1000
.
- Returns
returns a list of two items, that contains:
- p_value
P-value of MGC
- metadata
a
dict
of metadata with the following keys: - :null_distribution: numpy array representing distribution of test statistic under null.
- Return type
Example:
>>> import numpy as np >>> from mgcpy.independence_tests.mgc.mgc_ts import MGC_TS >>> >>> X = np.array([0.07487683, -0.18073412, 0.37266440, 0.06074847, 0.76899045, ... 0.51862516, -0.13480764, -0.54368083, -0.73812644, 0.54910974]).reshape(-1, 1) >>> Y = np.array([-1.31741173, -0.41634224, 2.24021815, 0.88317196, 2.00149312, ... 1.35857623, -0.06729464, 0.16168344, -0.61048226, 0.41711113]).reshape(-1, 1) >>> mgc_ts = MGC_TS() >>> p_value, metadata = mgc_ts.p_value(X, Y, replication_factor = 100)